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i. Introduction. In a medium, with a nonlinear thermal conductivity, thermal waves with 
a sharp front can exist [I]. If the thermal diffusivity of the medium X - Tn (T is the tem- 
perature), then the temperature gradient near the front of the thermal wave will be of the 
form dT/dx ~ Ixf - xl i/n-l. The temperature in the thermal wave front decreases and the den- 
sity of the gas medium correspondingly increases. If the thermal wave propagates upward in 
the field of gravity (directed downward), then a convective instability can arise. The effect 
of gravity on the hydrodynamic instability of a flare front was studied in [2]. Analogous 
effects occur when the acceleration is due to other causes, for example incidence of a shock 
or acoustic wave on the flare front; this is one of the causes of vibrational combustion 
[3]. The acceleration also affects the stability of the flare when it propagates with a vari- 
able velocity [2]. The effect of acceleration of the front on the Rayleigh-Taylor instabil- 
ity of the boundary between the detonation products and the gas in the case of a spherical 
explosion was discussed in [4]. The instability mechanism was related to the deceleration 
of the shock wave front and the passing of the detonation products out through the front, 
where the latter has a large density in comparison to that of the ambient gas. 

A convective instability of thermal waves occurs when the acceleration of the front is 
positive, since, in this case, the inertial force in a coordinate system moving with the front 
is directed toward the gas with the smaller density. In an infinite medium such an instabil- 
ity cannot occur. For example, for the case of propagation of thermal waves from an instant- 
aneous plane source, the acceleration of the front is negative for the dependence X ~ T n [i]: 

o n+3 

g = ~ ~ - ~  �9 

For a half-space with a constant temperature T o on the boundary we have g - Tn/204tz/2 [I], 
n+3 

and for a constant heat flux on the boundary gN--2(n+ I)/(7~+2)~t ~+~ 

A convective instability of thermal waves in a half-space is possible initially, until 
the self-modeling regime occurs. For example, consider the case where a cold gas is initial- 
ly thermally insulated from a hot wall. After removal of the thermal insulation, the gas 
begins to heat up and for a nonlinear thermal diffusivity a thermal wave arises, which is 
decelerated at large values of the time, in correspondence with the self-modeling regime. 
But initially the gas is accelerated close to the wall, and this can cause a convective in- 
stability. 

An analogous situation occurs for cooling waves. If the thermal diffusivity of the mediu 
decreases with increasing temperature (X - T-n), then 

gN 

and hence at asymptotically large values of 
contrast to the deceleration of the heating 
creases. The solution (i.i) is invalid for 
For cooling near a wall, the gas flows into 
vective instability can arise. 

(n - 2) ( i. i ) 

the time, the cooling wave is accelerated (in 
wave) and the magnitude of the acceleration de- 
the early stages of the self-modeling solution. 
a cold region and slows down; therefore, a con- 

Cooling waves are formed in cases when the thermal diffusivity of the median decreases 
with increasing temperature. For a high-temperature gas this can occur through the mechanism 
of radiative thermal conductivity [i], which occurs as a result of a sharp decrease of the 
Rosseland passage of the radiation with increasing temperature. Another possibility is the 
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formation of cooling waves in a temperature region in which there are chemical reactions (dis- 
sociation or ionization of the gas) and where the contribution of these chemical reactions 
to the thermal conductivity is decreasing. 

Although the convective instability considered here occurs in a thin layer near the bound- 
ary, it can lead to the formation of a turbulent region and to more intense heat exchange 
between the gas and wall. For a high-temperature gas, where the existence of cooling waves 
depends on the radiative thermal conductivity, this mechanism can be significant for the prob- 
lems of reflection and interaction of shock waves with surfaces (the ends of shock tubes). 

We consider the instability of a gas occupying a half-space and cooled by an unbounded 
region. This model describes experiments of the following type: At the initial instant of 
time let a semiinfinite pipe be filled with hot gas of temperature T o , which either is at 
rest or flows into a cooled wall with a constant velocity, corresponding to reflection of 
a shock wave from the wall. Upon contact with the wall, the gas begins to cool, and the gas 
moves toward the cooled wall of the pipe, which causes the gas to cool, since close to the 
wall the gas is decelerated. Therefore, the acceleration of the gas changes sign in the region 
of motion. The resolution time of the pressure nonuniformities of an acoustic wave is less 
than the characteristic transit time of the thermal wave; therefore, the pressure can be as- 
sumed to be constant, which means that the density profile will be inversely related to the 
temperature profile, i.e., near the wall the gas is denser. 

For certain dependences of the thermal diffusivity on temperature a condition is pos- 
sible in which the acceleration of the cooled gas is in the direction of higher gas densi- 
ties, and this leads to convective instability of the gas. For accelerations exceeding a 
certain critical value, turbulent motion of the gas near the face of the wall can arise, 
which smooths out the temperature distribution of the gas near the wall. 

The problem consists of three parts: It is necessary to find the unperturbed motion 
of the gas, which is assumed to be laminar and nonstationary; it is necessary to study the 
stability of this motion and to consider the dynamics of the development of the turbulent 

region. 

2. Unperturbed Motion of the Gas in a Cooling Wave. The system of equations describ- 
ing the one-dimensional nonstationary motion of the gas includes the equation of continuity, 
the equations of momentum and energy balance, and the equation of state of the gas: 

dp av 
d-7 + p~=0; (2.1) 

dv O p 4 0 ( a v )  
Pdt am + ' $ ' ~ "  N~" ; ( 2 . 2 )  

p~ dr ap 4 ; o ~  ~ o (~or~ 
V-dT= d-7 + Tn~-g~x} + - ~ x \  b'Tx]; (2.3)  

p = pBT. (2.4) 

Here ~ is the viscosity, X(T) is the thermal conductivity, and Cp is the heat capacity of the 

gas, and x > 0. 

Neglecting viscous dissipation in comparison with heat transport (n(Sv/Sx) 2 << ~182T/ 
8x21)andassuming the pressure is constant (since Las/~ >> i, where L is the characteristic 
linear dimension of the nonuniformities and as is the speed of sound), we transform to 
Lagrangian coordinates. 

The equations of continuity and energy (for cp = const) in Lagrangian coordinates (a) 
have the form 

pdx = poda; ( 2 . 5 )  
aT (a, t) a ( ~ paT) 

at --o-7 PoTv Po b-$ " ( 2 . 6 )  

For  a c o n s t a n t  p r e s s u r e ,  t h e  d e n s i t y  and t h e r m a l  c o n d u c t i v i t y  of  t h e  gas  a r e  d e t e r m i n e d  
by the temperature; therefore, the energy equation (2.6) can be solved for given initial and 
boundary conditions. 

Introducing the variable g = a/2(x0t) I/2, we write (2.6) in the form 
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d dO 9gdO d'-~ / (0) -~ -l- -~ ~'~ = O, ( 2 .7  ) 

where O = T/T0, f(@) = p(O)X(@) P0X0, Xo = X0/00Cp. 

We assume that the gas is bounded by an infinite wall whose temperature at x = -~ is 
held constant [T(-~) = Tw]. The equation of heat propagation inside the wall is 

a r  a2r x < 0 ~  (2 8) 

where  • i s  t h e  t h e r m a l  d i f f u s i v i t y  o f  t h e  w a l l .  

The bounda ry  c o n d i t i o n s  f o r  ( 2 . 3 )  and ( 2 . 8 )  f o l l o w  from t h e  c o n t i n u i t y  o f  t e m p e r a t u r e  
and h e a t  f l u x  a t  t h e  w a l l :  

~w~OOlx=_o = xTzoOIx=+o" 0 ( - - 0 ) = 0 ( + 0 ) .  ( 2 . 9 )  

Transforming to Lagrangian coordinates, we obtain the boundary conditions for (2.7): 

"(~176 
d-~r !(0) I~=o' m~=t~Zopo%} 

The connection between the Euler and Lagrangian coordinates is given by the equation of con- 
tinuity (2.5): 

Uo) 

2 ~ ,rZotW~ = 0 ( 2 . 1 1 )  

The velocity v and acceleration g of the gas can be found by differentiating (2.11), since 
the viscosity is zero for one-dimensional motion: 

i dO o0  . 

g(~, t ) =  -- ~ + 2ta!---- ~ d-~" ( 2 . 1 3 )  

E q u a t i o n  ( 2 . 7 )  can be s o l v e d  a n a l y t i c a l l y  o n l y  f o r  t h e  c a s e  X - T n,  n = 0, I ,  2 [ 5 ] .  
For an arbitrary form of f(@) it must be solved numerically. Calculations of the temperature 
and acceleration profiles of the cooled gas show that a region of convective instability is 
formed when the thermal conductivity of the gas decreases rapidly enough with increasing tem- 
perature; in this case, the cooling waves have a sharp front. The existence of a front to 
the cooling waves for this type of X(T) dependence is supported by analysis similar to that 
leading to the existence condition for heating waves [i]. 

The numerical calculations show that for a temperature dependence of the thermal conductiv- 
ity of the form X ~ T -n, a front with a region of convective instability forms for n~2.5. 

In Fig. la-c we show the dimensionless profiles of temperature, density, velocity, and 
acceleration of the gas as functions of the exponent n = I, 2.5, 4.5 (curves 1-3, respective- 
ly). When n~2.5, the cooling wave front becomes sharper and the region of gas in which 
convective instability is possible increases in size. 
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3. Stability of the Unperturbed Motion. In order to study the convective instability 
of the one-dimensional unperturbed motion of the gas, it is necessary to consider three-dimen- 
sional perturbations. A nonuniform perturbation developing along the y axis (insert in Fig. 
Ic) can have an arbitrary spectrum; therefore, the problem is complicated in the case when 
the characteristic linear dimension of the nonuniformity along the y axis is of the same order 
of magnitude as the linear dimension of the nonuniformity of the unperturbed nonstationary 
motion. It is important, however, to show that this type of laminar motion of the cooled 
gas is unstable. Hence, if we are not interested in obtaining the critical condition for 
transition to turbulent motion, we may consider only the short-wavelength perturbations. In 
this case the quasistationary approximation is used, in which we will assume that the charac- 
teristic scale of variation of the perturbation is smaller than the scale of the unperturbed, 
nonstationary problem (the perturbation is considered to be a "ripple" on a slowly varying 
(in space) distribution of unperturbed parameters). Since the perturbed motion is three- 
dimensional, the advantage of a Lagrangian description is lost, and we therefore use the Euler 
description of the motion. 

Assuming subsonic perturbations, the equation of continuity can be taken in the Boussin- 
esq approximation div v I = 0 [6]. Here and below we let the subscript 1 refer to perturba- 
tions of the various parameters. Then the linearized equation of motion has the form 

av avl 
Pl"~ + P-3T---- - - V P l  + pvAvv ( 3 . 1 )  

We apply the operation rot rot to (3.1) and take the x component of the result. Assuming 
the kinematic viscosity v is constant and the unperturbed equation is quasistationary, we 
obtain 

a 2 a ~ g 
0"70 Av 1 = -TA• + wA Avl, A,_ - - - - - -+--0y 2 0z ~. ( 3 . 2 )  

The linearized equation of heat conduction in the quasistationary approximation is 

OF I aT 
'at + vl 37"z = %AT1" ( 3 . 3 )  

The system of equations (3.2) and (3.3) reduces to the equations of thermal convection if 
we replace the acceleration of gravity by the acceleration of the gas at a given point. Solv- 
ing the resulting system of equations by the method of Galerkin with Rayleigh boundary condi- 
tions [6] (since the convective instability criterion does not depend very significantly on 
the exact boundary conditions [6]) we find the following expression for the perturbation in- 
crement ~ : 

-|/CZ2 ~ gk2 0T 
"~ (k) a (v + X) 4- _ .%)2 ( 3.4 ) 

Here ~ = m2~2/L 2, m is an integer, k is the wave number, L is the characteristic dimension 
of the nonuniformities, which is of the order of the linear dimension of the region in which 
g < 0. For short-wave perturbations (kL >> i) and sufficiently large values of the parameter 
g/T(ST/Sx), convective instability arises. 

4. Effect of Turbulence on the Cooling of the Gas. Turbulent mixing in a region where 
there is an instability of the Taylor type was studied in [7-9], where it was shown that the 
scale of turbulence is ~ = ~L (L is the linear dimension of the region of mixing, and ~ = 
0.1-0.4). In the problem considered here, the turbulent region rapidly expands to the dimen- 
sion of the region where the acceleration of the gas is negative. A perturbation propagat- 
ing from this region into a region with positive acceleration is damped out because this 
direction of acceleration stabilizes the perturbation. Because of this effect, the tempera- 
ture distribution in the region with negative acceleration will be smoothed out. Intense 
heat exchange in a region with a sharp temperature gradient can lead to intense cooling of 
the gas through the instability region with small thermal resistance. 
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NONLINEAR WAVES AND STABILIZATION OF TWO-DIMENSIONAL INSTABILITY 

IN A BOUNDARY LAYER 

V. P. Reutov UDC 532.526.530.182 

As a rule, the transition to turbulence in a boundary layer is associated with the growth 
of two-dimensional waves [1-4]. Consequently, the investigation of the nonlinear stage in 
the development of a two-dimensional instability has an important role in the creation of a 
transition theory. Methods of the theory of a weak nonlinearity permit computation of the 
coefficients in the dynamic equations proposed by Landau [5, 6] for the weak wave amplitude. 
However, for those values of the flow parameters that are ordinarily realized in the transi- 
tion region, the weak nonlinearity approximation describes only the initial stage of wave 
amplification. Substantially nonlinear structures that originate in the boundary layer be- 
cause of the constraint of the two-dimensional instability are examined in this paper. 

The mechanism of boundary-layer instability in the case of infinitesimally small perturb- 
ations has long been studied (see [i, 7], say). It is known that the occurrence of a viscous 
near-wall layer (VNWL) results in wave destabilization, while resonance wave-flow interaction 
can attenuate or totally suppress this instability. In the case when the thickness of the 
resonance domain of flow interaction with the wave, the critical layer (CL) is sufficiently 
small, there is a possibility of analytical investigation of the substantially nonlinear stage 
in development of the instability [8-12]. Simplification of the problem is associated with 
localization of the nonlinearity within the limits of a thin CL. However, formation of the 
VNWL was not taken into account in [8] (slip conditions were posed at the wall). The shift 
in the primary flow velocity near the wall was not taken into account in [9] in the determi - 
nation of the VNWL structure, which is only justified for very large Reynolds numbers. More- 
over, it follows from the solution of the nonstationary problem [12] that the natural waves 
constructed in [9] correspond to the threshold of strict origination of instability (and are 
not constrained by it). Below, we solve the problem of stationary waves originating for mod- 
erately large Reynolds numbers that are characteristic for the main part of the boundary layer 
neutral curve loop. The analysis is constructed within the framework of CL theory and is 
based on graphic representations of the CL structure and the instability mechanism. From 
the formal point of view, the procedure proposed for the solution can be considered a general- 
ization of the Tollmien method used to construct the neutral curve in the linear theory of 
hydrodynamic instability [i]. The results of computations are compared with known experi- 
mental data. 
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